Python培训
美国上市Python培训机构

400-111-8989

热门课程

Python 如何编写一个拼写纠错器?

  • 发布:Python培训
  • 来源:问答
  • 时间:2017-07-12 16:26

2007年的某个星期,我的两个朋友(Dean和Bill)分别向我传达了他们对Google的拼写自动纠错能力的赞叹。例如输入"speling",Google会立即显示"spelling"的检索结果。我原以为这两位才智卓越的工程师、数学家,会对其工作原理有准确的推测,事实上他们没有。后来我意识到,他们怎么会对离自身专业领域如此远的东西认知清晰呢?

我觉得他们还有其他人,也许能从拼写纠错原理的解释中获益。工业级的完整拼写纠错相当复杂(详细参见1和2),在横贯大陆的航空旅途中,我用约半页代码写了一个迷你拼写纠错器,其性能已经达到对句子以10词/秒的速度处理,且纠错准确率达到80%~90%。

代码如下:

#coding:utf-8
importre
fromcollectionsimportCounter
defwords(text):
returnre.findall(r'w',text.lower())
#统计词频
WORDS=Counter(words(open('big.txt').read()))
defP(word,N=sum(WORDS.values())):
"""词'word'的概率"""
returnfloat(WORDS[word])/N
defcorrection(word):
"""最有可能的纠正候选词"""
returnmax(candidates(word),key=P)
defcandidates(word):
"""生成拼写纠正词的候选集合"""
return(known([word])orknown(edits1(word))orknown(edits2(word))or[word])
defknown(words):
"""'words'中出现在WORDS集合的元素子集"""
returnset(wforwinwordsifwinWORDS)
defedits1(word):
"""与'word'的编辑距离为1的全部结果"""
letters='abcdefghijklmnopqrstuvwxyz'
splits=[(word[:i],word[i:])foriinrange(len(word)1)]
deletes=[LR[1:]forL,RinsplitsifR]
transposes=[LR[1]R[0]R[2:]forL,Rinsplitsiflen(R)>1]
replaces=[LcR[1:]forL,Rinsplitsforcinletters]
inserts=[LcRforL,Rinsplitsforcinletters]
returnset(deletestransposesreplacesinserts)
defedits2(word):
"""与'word'的编辑距离为2的全部结果"""
return(e2fore1inedits1(word)fore2inedits1(e1))
函数correction(word)返回一个最有可能的纠错还原单词:

>>>correction('speling')
'spelling'
>>>correction('korrectud')
'corrected'
它是如何工作的:概率理论

调用correction(w)函数将试图选出对于词w最有可能的拼写纠正单词,概率学上我们是无法预知应该选择哪一个的(例如,"lates"应该被纠正为"late"还是"latest"或"latters"...?)。对于给定的原始词w,我们试图在所有可能的候选集合中,找出一个概率最大的修正结果c。

$$argmax_cincandidatesP(c|w)$

根据贝叶斯原理,它等价于:

argmaxcincandidatesfracP(c)P(w|c)P(w)

由于对w的每个候选单词c,其P(w)均相等,因此剔除后公式如下:

argmaxcincandidatesP(c)P(w|c)

该式分为4个部分:
1.选择机制:argmax
选择候选集中概率最高的单词。
2.候选模型:cincandidates
有哪些候选单词可供考虑。
3.语言模型:P(c)
c在英语文本中出现的概率。例如:在英语文本出现的单词中,约7%是"the",那么P(the)=0.07
4.错误模型:P(w|c)
当作者本意是c结果打成w的概率。例如:概率P(the|the)相当高,而P(theeexyz|the)将非常低。

一个显而易见的问题是:为什么将简单的表达P(c|w)引入两个模型使得其变得更复杂?答案是P(c|w)本身就是两个部分的合并,将二者分开能更明确地进行处理。考虑对错误拼写"thew"进行还原,两个候选单词分别是"the"和"thaw",二者谁的P(c|w)更高呢?"thaw"的优点在于它只对原词做了细小的改变:将'e'换成'a'。而另一方面,"the"似乎是一个更常见的词,尽管增加'w'似乎变化更大,可能性更小,也许是打字者在敲'e'后手滑呢?问题的核心在于:为了计算P(c|w)我们必须同时考虑c出现的概率,以及从c变成w的可能性。因此显式地分为两部分,思路上会更清晰。

它是如何工作的:Python部分

该程序的4个部分:
1.选择机制:在Python中,带key的max()函数即可实现argmax的功能。
2.候选模型:先介绍一个新概念:对一个单词的简单编辑是指:删除(移除一个字母)、置换(单词内两字母互换)、替换(单词内一个字母改变)、插入(增加一个字母)。函数edits1(word)返回一个单词的所有简单编辑(译者:称其编辑距离为1)的集合,不考虑编辑后是否是合法单词:

defedits1(word):
"""与'word'的编辑距离为1的全部结果"""
letters='abcdefghijklmnopqrstuvwxyz'
splits=[(word[:i],word[i:])foriinrange(len(word)1)]
deletes=[LR[1:]forL,RinsplitsifR]
transposes=[LR[1]R[0]R[2:]forL,Rinsplitsiflen(R)>1]
replaces=[LcR[1:]forL,Rinsplitsforcinletters]
inserts=[LcRforL,Rinsplitsforcinletters]
returnset(deletestransposesreplacesinserts)
这个集合可能非常大。一个长度为n的单词,有n个删除编辑,n?1个置换编辑,26n个替换编辑,26(n1)的插入编辑,总共54n25个简单编辑(其中存在重复)。例如:

>>>len(edits1('something'))
442
然而,如果我们限制单词为已知(known,译者:即存在于WORDS字典中的单词),那么这个单词集合将显著缩小:

defknown(words):
"""'words'中出现在WORDS集合的元素子集"""
returnset(wforwinwordsifwinWORDS)
>>>known(edits1('something'))
['something','soothing']
我们也需要考虑经过二次编辑得到的单词(译者:"二次编辑"即编辑距离为2,此处作者巧妙运用递归思想,将函数edits1返回集合里的每个元素再次经过edits1处理即可得到),这个集合更大,但仍然只有很少一部分是已知单词:

defedits2(word):
"""与'word'的编辑距离为2的全部结果"""
return(e2fore1inedits1(word)fore2inedits1(e1))
>>>len(set(edits2('something'))
90902
>>>known(edits2('something'))
{'seething','smoothing','something','soothing'}
>>>known(edits2('somthing'))
{'loathing','nothing','scathing','seething','smoothing','something','soothing','sorting'}
我们称edits2(w)结果中的每个单词与w的距离为2。

3.语言模型:我们通过统计一个百万级词条的文本big.txt中各单词出现的频率来估计P(w),它的数据来源于古腾堡项目中公共领域的书摘,以及维基词典中频率最高的词汇,还有英国国家语料库,函数words(text)将文本分割为词组,并统计每个词出现的频率保存在变量WORDS中,P基于该统计评估每个词的概率:

defwords(text):
returnre.findall(r'w',text.lower())
#统计词频
WORDS=Counter(words(open('big.txt').read()))
defP(word,N=sum(WORDS.values())):
"""词'word'的概率"""
returnfloat(WORDS[word])/N
可以看到,去重后有32,192个单词,它们一共出现1,115,504次,"the"是出现频率最高的单词,共出现79,808次(约占7%),其他词概率低一些。

>>>len(WORDS)
32192
>>>sum(WORDS.values())
1115504
>>>WORDS.most_common(10)
[('the',79808),
('of',40024),
('and',38311),
('to',28765),
('in',22020),
('a',21124),
('that',12512),
('he',12401),
('was',11410),
('it',10681),
('his',10034),
('is',9773),
('with',9739),
('as',8064),
('i',7679),
('had',7383),
('for',6938),
('at',6789),
('by',6735),
('on',6639)]
>>>max(WORDS,key=P)
'the'
>>>P('the')
0.07154434228832886
>>>P('outrivaled')
8.9645577245801e-07
>>>P('unmentioned')
0.0
4.错误模型:2007年坐在机舱内写这个程序时,我没有拼写错误的相关数据,也没有网络连接(我知道这在今天可能难以想象)。没有数据就不能构建拼写错误模型,因此我采用了一个捷径,定义了这么一个简单的、有缺陷的模型:认定对所有已知词距离为1的编辑必定比距离为2的编辑概率更高,且概率一定低于距离为0的单词(即原单词)。因此函数candidates(word)的优先级如下:
1.原始单词(如果已知),否则到2。
2.所有距离为1的单词,如果为空到3。
3.所有距离为2的单词,如果为空到4。
4.原始单词,即使它不是已知单词。

效果评估

现在我们看看程序效果如何。下飞机后,我从牛津文本档案库下载了RogerMitton的伯克贝克拼写错误语料库,从中抽取了两个错误修正测试集,前者在开发中作为参考,调整程序以适应其结果;后者用于最终测试,因此我不能偷看,也无法在评估时修改程序。取两个集合分别用于开发和测试是个好习惯,它让我不至于自欺欺人地调整程序以适应结果,然后觉得程序效果有提升。我还写了单元测试:

defunit_tests():
"""开发的单元测试"""
assertcorrection('speling')=='spelling'#insert
assertcorrection('korrectud')=='corrected'#replace2
assertcorrection('bycycle')=='bicycle'#replace
assertcorrection('inconvient')=='inconvenient'#insert2
assertcorrection('arrainged')=='arranged'#delete
assertcorrection('peotry')=='poetry'#transpose
assertcorrection('peotryy')=='poetry'#transposedelete
assertcorrection('word')=='word'#known
assertcorrection('quintessential')=='quintessential'#unknown
assertwords('ThisisaTEST.')==['this','is','a','test']
assertCounter(words('Thisisatest.123;ATESTthisis.'))==(
Counter({'123':1,'a':2,'is':2,'test':2,'this':2}))
assertlen(WORDS)==32192
assertsum(WORDS.values())==1115504
assertWORDS.most_common(10)==[
('the',79808),
('of',40024),
('and',38311),
('to',28765),
('in',22020),
('a',21124),
('that',12512),
('he',12401),
('was',11410),
('it',10681)]
assertWORDS['the']==79808
assertP('quintessential')==0
assert0.07<P('the')<0.08
return'unit_testspass'
defspelltest(tests,verbose=False):
"""对测试集合1中的(right,wrong)词条,运行correction(wrong)并统计结果的正确性"""
importtime
start=time.clock()
good,unknown=0,0
=len(tests)
forright,wrongintests:
w=correction(wrong)
good=(w==right)
ifw!=right:
unknown=(rightnotinWORDS)
ifverbose:
print('correction({})=>{}({});expected{}({})'
.format(wrong,w,WORDS[w],right,WORDS[right]))
dt=time.clock()-start
print('{:.0%}of{}correct({:.0%}unknown)at{:.0f}wordspersecond'
.format(good/n,n,unknown/n,n/dt))
defTestset(lines):
"""对测试集合2中的错误样本,将'wrong1wrong2'修正为[('right','wrong1'),('right','wrong2')]"""
return[(right,wrong)
for(right,wrongs)in(line.split(':')forlineinlines)
forwronginwrongs.split()]
print(unit_tests())
spelltest(Testset(open('spell-testset1.txt')))#Developmentset
spelltest(Testset(open('spell-testset2.txt')))#Finaltestset
结果如下:

unit_testspass
75%of270correctat41wordspersecond
68%of400correctat35wordspersecond
None
可以看到,开发部分的集合准确率达到了74%(处理速度是41词/秒),而在最终的测试集中准确率是68%(31词/秒)。结论是:我达到了简洁,开发时间短,运行速度快这3个目的,但准确性不太高。也许是我的测试集太复杂,又或是模型太简单因故而不能达到80%~90%的准确率。

后续工作

考虑一下我们如何做的更好。
1.语言模型P(c)。在语言模型中我们能区分两种类型的错误(译者:known词和unknown词,前者2次编辑词集合存在元素inWORDS,后者不存在),更为严重的是unknow词,程序会直接返回该词的原始结果。在开发集合中,有15个unknown词,约占5%,而测试集中有43个(11%)。以下我们给出部分spelltest的运行结果:

correction('transportibility')=>'transportibility'(0);expected'transportability'(0)
correction('addresable')=>'addresable'(0);expected'addressable'(0)
correction('auxillary')=>'axillary'(31);expected'auxiliary'(0)
我将期望输出与实际输出分别打印出来,计数'0'表示目标词汇不在词库字典内,因此我们无法纠错。如果能收集更多数据,包括使用一些语法(例如在单词后加入"ility"或是"able"),我们能构建一个更好的语言模型。

处理unknown词汇的另一种办法是,允许correction结果中出现我们没见过的词汇。例如,如果输入是"electroencephalographicallz",较好的一种修正是将末尾的'z'替换成'y',尽管"electroencephalographically"并不在词库里,我们可以基于词成分,例如发音或后缀来实现此效果。一种更简单的方法是基于字母序列:统计常见2、3、4个字母序列。

2.错误模型P(w|c)。目前为止我们的错误模型相当简陋:认定编辑距离越短错误越小。这导致了许多问题,许多例子中应该返回编辑距离为2的结果而不是距离为1。如下所示:

correction('reciet')=>'recite'(5);expected'receipt'(14)
correction('adres')=>'acres'(37);expected'address'(77)
correction('rember')=>'member'(51);expected'remember'(162)
correction('juse')=>'just'(768);expected'juice'(6)
correction('accesing')=>'acceding'(2);expected'assessing'(1)
为何"adres"应该被修正为"address"而非"acres"呢?直觉是从'd'到"dd"和从's'到"ss"的二次编辑很常见,应该拥有更高的概率,而从'd'到'c'的简单编辑概率很低。

显然我们可以根据编辑开销来改进模型:根据直觉将叠词的编辑开销降低,或是改变元音字母。一种更好的做法是收集数据:收集拼写错误的语料,并对照正确单词统计增删、替换操作的概率。想做好这些需要大量数据:例如给定窗口大小为2的两个单词,如果你想得到两者间的全部修正概率,其可能的转换有266种,超过3000万词汇。因此如果你想获取每个单词的几个转换实例,大约需10亿条修正数据,如要保证质量,大概需要100亿之多。

注意到语言模型和错误模型存在联系:目前如此简陋(编辑距离为1的词必定优于编辑距离为2的词)的错误模型给语言模型造成阻碍:我们不愿将相对冷僻的词放入模型内,因为如果这类词恰好与输入单词的编辑距离为1,它将被选中,即使存在一个编辑距离为2但很常见的词。好的错误模型在添加冷僻词时更富有侵略性,以下例子展示了冷僻词出现在字典里的危害:

correction('wonted')=>'wonted'(2);expected'wanted'(214)
correction('planed')=>'planed'(2);expected'planned'(16)
correction('forth')=>'forth'(83);expected'fourth'(79)
correction('et')=>'et'(20);expected'set'(325)
3.修正集合argmaxc。本程序会枚举某单词所有编剧距离2以内的修正,在开发集的270个修正词中只有3个编辑距离超过2,然而在测试集合中,23/400个编辑距离超过2,它们是:

purpleperpul
curtainscourtens
minutesmuinets
successfulsucssuful
hierarchyheiarky
professionpreffeson
weightedwagted
inefficientineffiect
availabilityavaiblity
thermawearthermawhere
aturenatior
dissensiondesention
unnecessarilyunessasarily
disappointingdissapoiting
acquaintancesaquantences
thoughtsthorts
criticismcitisum
immediatelyimidatly
ecessarynecasery
ecessarynessasary
ecessarynessisary
unnecessaryunessessay
ightnite
minutesmuiuets
assessingaccesing
ecessitatesnessisitates
我们可以考虑扩展一下模型,允许一些编辑距离为3的词进入修正集合。例如,允许元音之后插入元音,或元音间的替换,又或'c'和's'之间的替换。

4.第四种(也可能是最佳)改进方案为:将correction的文本窗口调大一些。当前的correction只检测单个词,然而在许多情形下仅靠一个单词很难做出判决。而假若这个单词恰好出现在字典里,这种纠错手段就更显无力。例如:

correction('where')=>'where'(123);expected'were'(452)
correction('latter')=>'latter'(11);expected'later'(116)
correction('advice')=>'advice'(64);expected'advise'(20)
我们几乎不可能知道correction('where')在某个语句内应该返回"were",而在另一句返回"where"。但如果输入语句是correction('Theywheregoing'),我们很容易判定此处"where"应该被纠错为"were"。

要构建一个能同时处理词和上下文的模型需要大量数据。幸运的是,Google已经公开了最长5个词的全部序列词库,该数据源于上千亿的语料集。我相信要使拼写纠错准确率达到90%,必须依赖上下文辅助决策,关于这个以后我们再讨论。

我们也可以决定以哪种方言进行训练。以下纠正时产生的错误均源于英式和美式拼写间的差异:

correction('humor')=>'humor'(17);expected'humour'(5)
correction('oranisation')=>'organisation'(8);expected'organization'(43)
correction('oranised')=>'organised'(11);expected'organized'(70)
5.最后,我们可以改进实现方法,使程序在不改变结果的情况下运行速度更快。例如:将实现该程序的语言从解释型语言换成编译型语言;缓存纠错结果从而不必重复纠错。一句话:在进行任何速度优化前,先大致看看时间消耗情况再决定优化方向。

阅读材料

RogerMitton关于拼写检测的调研文章
Jurafsky和Martin的教材中拼写检测部分。
Manning和Schutze在他们编撰的FoundationsofStatisticalNaturalLanguageProcessing中很好的讲述了统计语言模型,但似乎没有(至少目录中没有)提及拼写检查。
aspell项目中有大量有趣的材料,其中的一些测试数据似乎比我使用的更好。
LinPipe项目有一个拼写检测教程

预约申请免费试听课

怕钱不够?可就业挣钱后再付学费!    怕学不会?助教全程陪读,随时解惑!     担心就业?一地学习,可全国推荐就业!

上一篇:iOS程序员如何使用Python写网路爬虫
下一篇:如何用Python分析用户消费行为?Python分析用户消费行为教程

什么样的Python培训机构才是好机构?

想学Python有没有必要报培训班?

零基础学Python编程开发难度大吗?从哪学起?

学习Python应该掌握哪些知识点?

选择城市和中心
贵州省

广西省

海南省